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Gasdynamics of a centrifugal machine 
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We consider axisymmetric steady centrifugally driven thermal convection in a 
compressible fluid in a rapidly rotating circular cylinder. The Boussinesq 
approximation is not used, because it is not valid for the case of practicalinterest. 
We clarify the importance of the effect of the flow-induced volume change of a 
fluid particle, and propose a widely applicable method of solution. 

1. Introduction 
The problem of centrifugally driven thermal convection in a compressible fluid 

in a circular cylinder is important in relation to a centrifugal machine used for 
the enrichment of uranium. Barcilon & Pedlosky (1967) and Homsy & Hudson 
(1969, 1971) studied this problem within the Boussinesq approximation. They 
clarified the point that the effect of thermal conduction is more predominant than 
the effect of thermal convection or vice versa according as E-*c(po --pl)/p0 
is smaller or larger than unity, where E = is the Ekman number, 
P, = jC,/,? the Prandtl number, p" the density, ,E the viscosity, K" the thermal 
conductivity, C, the specific heat a t  constant pressure, Q the angular velocity, 
H the height of the cylinder, and the suffixes 1 and 0 and tildes refer to typical 
points on the top and a t  the middle of the cylinder and to the original physical 
(dimensional) quantities, respectively. They also gave detailed discussions of 
the convection-dominated cases with H a 2 / g  = O(  1)  (Barcilon & Pedlosky 1967; 
Homsy & Hudson 1971) and with HQ2/g 1 (Homsy & Hudson 1969), where 
g is the gravitational acceleration. 

These studies are valuable for gaining a qualitative understanding of the flow 
field. However, is the Boussinesq approximation quantitatively valid from a 
practical viewpoint? Let us consider a centrifugal machine of radius 30cm 
rotating at 10000-20 OOOr.p.m. a t  room temperature, the working fluid being 
uranium fluoride, UF,. If the fluid temperature is uniform and the fluid rotates 
rigidly with the container, the pressure or density scale height in the radial 
direction is 1-4 em, which is smaller than the radius of the machine. This situation 
does not change, provided that the centrifugally driven thermal convection can 
be treated as a perturbation, except in regions too close to the axis. I n  such a 
case, the Boussinesq approximation is not valid from a quantitative viewpoint 
(Spiegel & Veronis 1960). 

Our task in this paper is to study the effect of the non-Boussinesq compressi- 
bility of the working fluid on the centrifugally driven thermal convection. Let 
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us consider a circular cylinder rotating around a vertical axis. The top tempera- 
ture of the cylinder is higher than the bottom temperature, and the side-wall 
temperature changes linearly with height. This linear distribution of temperature 
may be achieved if the thermal conductivity of the cylinder is sufficiently high in 
comparison with that of the fluid. The temperature difference between the top 
and the bottomis so small that  the thermal Rossby number 6 = (PI - po)/po (where 
5! is the temperature) may be treated as an infinitesimal. Our problem is to 
study the axisymmetric flow of compressible fluid in this cylinder. We assume that 
the angular velocity is so large that the radial scale height is smaller than the 
radius, except near the axis. The vertical scale height, on the contrary, is much 
larger than the height of the cylinder. Thus, we discard the Boussinesq approxi- 
mation, and use the original equations of state and of continuity. We assume 
that the viscosity and the thermal conductivity are small and depend only on 
the temperature, and that the Prandtl number and the ratio of the radius to t,he 
height of the cylinder are of order unity. 

Before beginning the detailed mathematical discussion, let us have a quick 
glance at aspects characteristic of non-Boussinesq compressibility. Because the 
radial scale height is smaller than the radius of the cylinder, a fluid particle 
appreciably swells or shrinks when it moves radially. The int'eraction between 
the fluid particle and its environment via the work due to this volume change 
gives a new kind of coupling between the velocity and the temperature. Thus, 
the temperature changes simultaneously with the velocity in the boundary layers. 
Another interesting aspect is that  the thickness of the horizontal boundary layer 
is proportional to the reciprocal of the square root of the density. We can ascribe 
this to the fact that the thickness of the horizontal layer is proportional to  the 
square root of the kinematic viscosity, and that we have assumed the viscosity 
to depend only on the temperature. 

In  $ 2  we describe the linearized basic equations for a small perturbation to a 
basic state of rigid-body rotation with uniform temperature. n7e define the basic 
parameters and express our restriction to  the case EB 9 G, where G is the ratio 
of the height of the cylinder to the vertical scale height. We discuss the boundary 
layers in $3, and the temperature field of the main bulk of the inner flow in $4. 
In $ 5, we give numerical results and a discussion. 

2. Basic equations 
Because of our assumption that the thermal Rossby number is infinitesimally 

small, we can treat the convection as a small perturbation to a basic state of 
rigid-body rotation with uniform temperature. We can determine the pressure 
fi and the density p" of the basic state by balancing the forces in a rotating frame 

where (?, 0, z") is a rotating system of cylindrical co-ordinates with angular velocity 
Q, p,, the temperature, R the gas constant and the suffixes 0 and B refer to the cen- 
tre of the midplane and to the basic state, respectively. Because Rpo/Qzi is 
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the radial scale height, the basic pressure and the density change appreciably 
with distance from the axis because of our assumption that the radial scale height 
is smaller than the cylinder radius. Thus, we cannot use Boussinesq approxima- 
tion (Spiegel & Veronis 1960). 

By using the non-dimensional quantities 

} ( 2 . 2 )  
( r ,  4 = z”/a (u, v, w )  = (QqSRTo) (!%9 go, a, 
= (T7ipO)/sTOb,  P = (@-@B)/@B,  p = (P”-P”B)/6P”B, 

where (qT, P o ,  ijS) is the velocity in the rotating frame, and by neglecting terms 
of higher order in 6, we obtain linearized basic equations for a perturbation to the 
above basic state: 

i a(ru) aw 
r ar az 
-- +-+Goru-Gw = 0, 

-2v+GorT+- = - 

2U = (E/EB)LV, 

p = p + T ,  
au u aw v.v=-+-+-,  
ar r az 
a 2  1 a a 2  I 

L z A--  
ar2 r ar 8.9’ r2 ’ 

A = -+--+- 

where 

(2-9) l 
and I’ is the ratio of the specific heats. 

We can obtain boundary conditions by expressing the fact that the top and 
the bottom temperatures are uniform, the side-wall temperature changes linearly 
with height and that the fluid velocity coincides with that of the cylinder on the 
cylinder surface: 

u = v = w = 0, T = ( -  l)j+l on z = j ( j  = 0, I), (0 6 r 6 y o ) ,  (2.10) 

u = v = w = O ,  T = 2 x - 1  on O < z < l  ( r = r O ) .  (2.11) 

To the same order of approximation, the left-hand side of (2.7) vanishes in the 
Boussinesq approximation. This term reproduces the work done by a fluid 
particle via its volume change, and is crucial for the flow of non-Boussinesq 
compressible fluid. We can estimate the main parameters E ,  Go and G corre- 
sponding t o  the size and the operating conditions of the centrifugal machine 
described in 9 I to be of order lo-’, 10 and respectively. According to this 
estimate, and for the sake of mathematical simplicity, we restrict ourselves to 
the case with EB G, and with Go - 1.  
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3. Boundary-layer analysis 
Because we consider a fluid with small viscosity and thermal conductivity, 

which is represented by the smallness of E in the basic equations, we may divide 
the flow field into the horizontal and the vertical boundary layers and the main 
inner flow. 

Main inner $ow 

Because of the centrifugal buoyancy, light fluid near the high temperature top 
floats towards the axis, and heavy fluid near the low temperature bottom sinks 
towards the side wall. Owing to the continuity of the flow, this radial flow in 
the horizontal boundary layer drives the meridional current in the main inner 
flow. To take into account this driving mechanism, we assume that the axial 
velocity and the temperature in the inner flow are of the same order of magnitude 
as those in the horizontal boundary layer, which are of order E i  and unity, 
respectively, as will be shown in equation (3.11). Thus, the scaling law of the 
inner flow is 

where the suffix i denotes order-unity quantities in the inner flow. The lowest 
order equations, with respect to E and G, for the inner flow are 

Because the side-wall temperature is anti-symmetric with respect to z = 4, 
we can restrict ourselves to inner flow temperatures with the same symmetry 
character. Then, pi vanishes by (3.3) and (3.5), and we obt,ain 

vi = 4GorTi. (3.8) 

We can obtain ui, vi and pi from (3.4); (3.7) and (3.8) once we have found Ti. A 
single equation for Ti is obtained by an elimination procedure: 

(3.9) 

where h = (r- I ) P , G , / ~ ~ .  (3.10) 

To determine the boundary conditions on (3.9),  and to obtain wi from (3.2) 
and the compatibility condition on the horizontal boundary, let us proceed to the 
boundary-layer analysis. 
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Horizontal boundary layer 

Through the strong coupling between the velocity and the temperature via the 
left-hand side of (2.7), the temperature changes simultaneously with the velocity 
in the boundary layer. The scaling law of the horizontal boundary layer for the 
case with E i  9 G is as follows: 

A 

(3.11) 

where the carets denote order-unity quantities in the horizontal boundary layer. 
The boundary-layer equations are 

f a = U ,  8 = V ,  i; = E-Bw, T = T ,  p^=p, 

fj = E-1 p ,  Cj = ( -  l)jE-B(z-j) (j = 0,  1), 

aa a ai; 
- + - + G , r ~ + ( - l ) j -  = 0, 

-2O+G,,rT--- = 0,  

ar r X i  
,. i a20 

cB a<; 

h 

$+T = 0, 

where we retain only the lowest order terms with respect to E and G. 
The boundary conditions are 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

A 
h & = v i + o = w i + w = O ,  T,+T=(-l) i+l  a t  & = O  ( j = O , l ) ,  (3.18) 

f + o  as cj+co, (3.19) 

for any function f .  Eliminating .ii from (3.14) and (3.16), and remembering the 
boundary conditions a t  Cj --f co, we obtain 

9 = - (r - 1 ) q ~ ~ / 2 ~ .  (3.20) 

Elimination of 9 and 5 from (3.13), (3.14) and (3.18) gives us a singleordinary 
differential equation for .ii: 

a 4 q a ~ ;  + 4 ~ 4 ~  = 0, (3.21) 

where c = {&,(I +hrz))t. (3.22) 

Thesolutionof (3.2l)subject to (3.18)and(3.19)givesus thefollowing: 

0 = ( - l ) j  G,r e-'cj sin aCj/2( 1 + hr2)3, 

T = ( - 1)j+lhr2 e-gG cos alJ( 1 + hr2),  

5 = ( -  l)~GOre-~6cos(r&/2(l  +hr2), 

(3.23) 

(3.24) 

(3.25) 

,. 
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where use has been made of (3.8), (3.13) and (3.20).  From the above expressions 
and (3.18), we obtain 

(3.26) 

where we have used (3.2) and (3.12) to obtain wi. 
As we see from (3.13)' the Coriolis forces, the centrifugal buoyancy and the 

viscous forces play roles in the horizontal boundary layer. We can consider the 
horizontal layer as a hybrid of the buoyancy and the Ekman layer. 

Another interesting aspect of the layer is that the thickness parameter v 
depends on r as we see in (3.22). Thus, the thickness of the layer is proport.iona1 
to the reciprocal of the square root of the basic density; the layer is thickest a t  
the axis and becomes thinner as the radial distance increases. As we explained 
in the introduction, this is ascribed to the fact that  the thickness of the horizontal 
layer is proportional to the square root of the kinematic viscosity, and that we 
have assumed the viscosity to depend only on the temperature. 

Side-wall boundary layer 

Because the side-wall temperature is anti-symmetric with respect to z = 4, 
the Stewartson Ei-layer does not appear in our case (Stewartson 1957). The seal- 
ing law of the side-wall boundary layer is as follows: 

u = E-fu,  V = v, W =  w, T = T, p = p ,  13 = E-Sp, 7 = E-*(ro-r ) ,  (3.28) 

where overbars denote order-unity quantities in the side-wall boundary layer. 

- - 

The boundary-layer equations are 

a q a z  - aqav = 0,  

- 2 v + G o r o ~ - a j 7 / a ~  = 0, 

2C,z - a2v/a72 = 0 ,  

aji 1 a2w 

az C, a72 0, = 

p + T  = 0, 
and the boundary conditions are 

T , + T = Z Z - I ,  v ~ + v = o ,  U = ' L U = O  a t  7 = 0 ,  

for all f ,  
f + 0  as y+co 

% = O  a t  x = j  ( j = O , l ) ,  

where we again retain the lowest order terms with respect to E and G. 
Elimination of U from (3.31) and (3.33) subject to (3.36) gives us 

F = - ( r - 1 ) P p O v / 2 r .  

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.37) 

(3.36) 

(3.38) 
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From (3.8), (3.38) and (3.35), we obtain 
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Ti = (22- 1)/(1 +hrg) a t  r = r,,, (3.39) 

!F = hr32z - I)/( 1 + hrg) a t  7 = 0. (3.40) 

Let us eliminate?, U andwfrom (3.29), (3.30), (3.31), (3.32) and (3.38) to obtain 

(3.41) 

It is interesting that we obtain a partial differential equation instead of an 
ordinary differential equation. Because w is symmetric with respect to x = +, we 
see that U, V and are anti-symmetric, by inspection of the boundary-layer 
equations. Then, the procedure for determining the boundary-layer quantities 
is similar to that of Hunter (1967). The function T is expanded in a cosine series as 

(3.42) 

Substitution of (3.42) into (3.41) gives us 

d6fn/dv6 = 4e&( 1 + hrg) (2n + 1)2n2f,. (3.43) 

The boundary conditions (3.35), (3.36) and (3.40) give us 

(3.44) 
8 hr,2 f;(o) =fl(O) = 0, 

(2n+1)2~21+h~,2’  fn(0) = - 

f , + O  as q + m .  (3.45) 

The solution of (3.43) subject to (3.44) and (3.45) is as follows: 

In  the Ekman extensions of the side-wall boundary layer, which are within 
a distanceO(E*) ofthe topand the bottom, we have to makea carefulexamination. 
Because the results of such an examination do not affect the above procedure, 
however, we omit the discussion of the Ekman extension. What we have to do 
now is to solve (3.9) subject to (3.27) and (3.39). 

4. The solution for the main inner flow 
Let us decompose as 

22- 1 sinh(Anz)-sinh{hn(l-z)} 
Tn(r). sinh A, + c  ’ 1+hr,2 n = l  

T. = - 
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Substitution of (4.1) into (3.9), (3.27) and (3.39) gives us 
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d2T, -+--+AkTn ldTn = 2hr dT, 
dr2 r dr 1+hr2 dr ' 

1 1 W 

Z: T,(r) = 
n=l 1 +hr2 1 +hrg' (4.3) 

T,(r,) = 0 for n = 1,2,3, ... . (4.4) 

Our problem is reduced to the solution of (4.2) subject to (4.3) and (4.4). By the 
Sturm-Liouville theorem, thesolutions of (4.2) subject to (4.4) formanorthogonal 
set of functions {T,(r)}. Thus, (4.3) can be satisfied term by term by the standard 
method for an orthogonal set of functions. 

Because I? - 1 is small for the case of practical interest (about 0.07 for UP,), 
we can take h [ = (r - 1) P, G,/4r] as a small parameter and expand Tn and An in 
terms of h: 

Substitution of (4.5) into (4.2)-(4.4) gives us 

(4.5) Tn = hTno + h2T,, + . . . , An = A,, + hh,, + . . . . 

d2Tno ldTno 
dr2 r dr -+--+X,$,Tno = 0,  

d2Tnl ldTnl dTn0 - +- - + A;,Tn1 = - 2AnlAnoTno - 2r-,  
dr2 r dr dr (4.7) 

Tno(r0) = Tnl(r0) = 0,  (4.8) 

(4.9) 
W m 

C Tno(r) = r i  - r2,  C Tnl(r) = r4 - r& 
n= 1 n=l 

where we show the equations for the lowest two terms of the expansions. The 
solution of (4.6) subject to (4.8) is 

COP) = anoJo(4lo~L (4.10) 

where a,, is a coefficient to be determined by (4.9), and 

An, = jOn/TO, (4.11) 

where jon is the nth positive zero of J,(x). Because {Tno(r)) is an orthogonal set 
of functions, as a special case of the above-mentioned orthogonality property, 
we can determine the a,, as follows : 

2 '3 J ( '  
an0 = 'ro/.On 1 son). 

The solution of (4.7) subject to (4.8) is 

(4.12) 
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Performing the summation in (4.15), we have 

Inserting (4.12) and (4.16) into (4.13), we obtain 

(4.16) 

(4.17) 

Summarizing, the solution for T, can be expressed as follows: 

where 
Ti = (22- 1)/(1+hr;) +hr~T(1)+(hr ; )2T(2 )+ . . . ,  (4.18) 

" sinh ( Anox) - sinh [Ano( 1 - z ) ]  S T(1) = C JO ( jon k) , 
n=l sinh Ano .J2n4(jOn) 

(4.19) 

" 1  + z 7  { z  cosh A,, z - (1 - z )  cosh Ano( 1 - z )  
1 sinh A,, 

8 
- coth A,, [sinh AnOz - sinh Ano( 1 - z ) ] }  

ro j tnJ l ( j0n)  

5. Results and discussion 
Because the convergence of the series in (4.19) and (4.20) is fast, as is expected 

owing t o  the factor j i n  in the denominator, we can truncate them after the first 
twenty terms. We can see the validity of the truncation from the agreement of 
thus calculated values of - T(l) and T@) with the exact values of 1 - (r/ro)2 and 
1 - ( ~ / r ~ ) ~ ,  respectively, on z = 0. Figures 1 and 2 show T(I) and T(2) for ro = 1, 
0.1 and 10. 

As we see in (4.1 S), the present expansion parameter is 

hr; = 0*25(r-  l )PTGor; / r  

rather tha,n h. The parameter can become small if (r - 1) r ;  is small for the case 
with order-unity Go. Thus, our approximation procedure is expected to have a 
wide range of applicability for operating gases of small I?- 1 in a machine of 
small aspect ratio ro. I n  effect, for the case of UF, in the machine with ro = Q, Go 
is about 70 for hr; of order 0.1. 

Finally, let us consider the meaning of our restrictions to the case with 

GE-4 < 1 and 6 < 1.  

We can omit the part of the temperature distribution symmetric with respect to 
z = because of the first restriction. If we relax this restriction, we must take into 
account the symmetric part also, and thus the effect of the side-wall layer as 
Hunter (1967) noted. The second restriction ensures the va,lidity of our linearized 
treatment. If we abandon this restriction, we must take into account the nonlinear 
effect of the thermal convection as was done by Barcilon & Pedlosky (1967) 
and Homsy & Hudson (1969). 
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FIGURE 1. Distributions of the expansion 
coefficients of the temperature field - P) 
and T(2) in the inner flow. The aspect ratio 
ro is taken to be 1. 

FIGVRE 2. Distributions of T@) for (a) 
ro = 0.1 and (b)  ro = 10. 
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